If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+11x-60=0
a = 6; b = 11; c = -60;
Δ = b2-4ac
Δ = 112-4·6·(-60)
Δ = 1561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{1561}}{2*6}=\frac{-11-\sqrt{1561}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{1561}}{2*6}=\frac{-11+\sqrt{1561}}{12} $
| 2^2+8=8x+18 | | .5v=45 | | f(2.6)=3.2*2.6 | | X+y=100000.05=0.035y+330 | | 57=r(30) | | 2x^2+4x=67 | | 0.2^x^2=0.04^4x-6 | | 37-(3x+5)=9x-8(x-3) | | 5x+49=3(6x-2x) | | 200/x+10=(200/x)-1 | | 2^x=162 | | 7x-11=5x16 | | 12x/3=8 | | 2^x-2=160 | | 3/15=-6x/5 | | 200/x+10=(200-x)/x | | 7x+34+9x=46 | | 4(2-x)=7x-3 | | 27—-5j=72 | | X+2(5+x)=85 | | 10=5p+10 | | 2/x+3=3/2x-3 | | 360=2(x+(8)x)) | | T(N)=4(6n+1) | | x2+10+1=0 | | 14=5x+3/2 | | 3x+15=-18 | | 4n^2+3n-27=0 | | h-3/5^2=1/2 | | 10t-5t^2=0 | | C-3/7+2/7=5/7(x+3/4 | | -10t-5t^2=0 |